If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+33x-100=0
a = 1; b = 33; c = -100;
Δ = b2-4ac
Δ = 332-4·1·(-100)
Δ = 1489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1489}}{2*1}=\frac{-33-\sqrt{1489}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1489}}{2*1}=\frac{-33+\sqrt{1489}}{2} $
| 2k(2)-5k-18=0 | | 0.625(8x+24)+1=1/2(12x-2)+12 | | -170=-17v | | 0.10d=0.05d | | 2k25k-18=0 | | 4x–6x–9x=33 | | 8x+3=6+4x | | 2x–10–8x=9 | | 6(6x+2)-9=-3 | | (3z+4)(2z+2)=0 | | -7=n-10 | | 2/7=-5/7+6w | | 9-4y=55 | | 4x-5-x=2x=10 | | (2x-1)^-1=0 | | (-2x-6)/3=5 | | 2y=1.3-3 | | 10x-6=4x+1 | | (x/4)+1=3 | | 45=6u-u | | n+20=18 | | 12(b•3)=30 | | 1/5x+1/5=0 | | 3x-13=-9 | | 5/8(8x+24)+1=1/2(12x-2)+12 | | 8x-9=3x-18 | | 12+(b•3=30 | | 27=3v+6v | | 25.92x+0.15=29.65 | | 9x+40=166 | | 17=12+x | | -1x-3=3x-9 |